Studies on polyploidy induction for improvement of quality traits in ornamental and medicinal plants

Document Type : Review paper


1 Department of Horticulture, Faculty of Agriculture,University of Zanjan, Zanjan, Iran

2 Department of Agronomy and Plant Breeding, Razi University, Kermanshah, Iran

3 Department of agricultural biotechnology, faculty of agriculture, Tarbiat Modares University, Tehran, Iran


Plants provide food, medicine, fuel and they have a positive impact on human life. Ornamental plants have a fundamental role in the human relationship with nature. Medicinal plants as genetic reserves can be considered as the precious national resource for each country and can be the most primary agricultural product. These two groups of plants are part of the natural wealth and have great economic values. Modern breeding methods are invented to resolve the need to diversify ornamental plants. These methods shorten the length of the breeding period to a good extent as well as affecting in the breeding of some plants whose improvement is not possible due to traditional methods. Creating a genetic mutation to improve quality is a necessity in any breeding program. Using natural and induced mutations in improving gene resources is very effective and as a result, helps in the development of improved and new cultivars of ornamental and medicinal plants. Haploid, double haploid and polyploidy plants are the new sources of germplasm that can be introduced as new cultivars or can be used in breeding programs. One of the breeding works to improve the valuable properties of plants is artificial polyploidy induction. Medicinal and ornamental plants with the complete set of duplicated chromosomes (not the usual ones) consist of more distinctive features such as modified phytochemical features, higher content of medicinal molecules, plant shape, plant color, size, scent and long-lasting flowering. To develop a successful protocol for duplicating the chromosomes, some important factors must be considered such as plant genotype and sample type. The type, amount and duration of mitotic inhibitors must also be considered as principal factors. In this article, significant advances in polyploidy are investigated using various mitotic inhibitors in ornamental and medicinal plants.

Graphical Abstract

Studies on polyploidy induction for improvement of quality traits in ornamental and medicinal plants


  • Using natural and induced mutations in improving gene resources is very effective and as a result, helps in the development of improved and new cultivars of ornamental and medicinal plants.
  • One of the correction works to improve the valuable properties of plants is artificial polyploidy induction.
  • Medicinal and ornamental plants with a complete set of duplicate chromosomes have more distinctive features such as plant form, color, size, aroma and long flowering.


Main Subjects

Adams, K.L., Wendel, J.F., 2005. Polyploidy and genome evolution in plants. Curr. Opin. Plant Biol., 8(2), 135-141.
Appels, R., Morris, R., Gill, B.S., May, C.E., 1998. Multiples of Basic Chromosome Numbers-Polyploidy. Chromosome Biol., 139-159.
Ari, E., Djapo, H., Mutlu, N., Gurbuz, E., Karaguzel, O., 2015. Creation of variation through gamma irradiation and polyploidization in Vitex agnus-castus L. Sci. Hort., 195, 74-81.
Ban, Y., Morita, Y., Ogawa, M., Higashi, K., Nakatsuka, T., Nishihara, M., Nakayama, M., 2019. Inhibition of post-transcriptional gene silencing of chalcone synthase genes in petunia picotee petals by fluacrypyrim. J. Exp. Bot., 70(5), 1513-1523.
Bharadwaj, D.N., 2015. Polyploidy in crop improvement and evolution. Plant Boil. Biotechnol., 619-638. 
Botelho, F.B.S., Rodrigues, C.S., Bruzi, A.T., 2015. Ornamental plant breeding. Ornam. Hortic., 21(1), 9-16.
Brandoli, C., Petri, C., Egea-Cortines, M., Weiss, J., 2020. The clock gene Gigantea 1 from Petunia hybrida coordinates vegetative growth and inflorescence architecture. Sci. Rep., 10(1), 1-17.
Broholm, S.K., Tähtiharju, S., Laitinen, R.A., Albert, V.A., Teeri, T.H., Elomaa, P., 2008. A TCP domain transcription factor controls flower type specification along the radial axis of the Gerbera (Asteraceae) inflorescence. Proc. Nat. Acad. Sci., 105(26), 9117-9122.
Carbajal, E.M., Zuleta, M.C., Swayzer, L., Schwartz, B.M., Chavarro, M.C., Ballen‐Taborda, A.C., Milla‐Lewis, S.R., 2019. Development of colchicine‐induced tetraploid St. Augustinegrass (Stenotaphrum secundatum) lines. Plant Breed., 138(6), 958-966.
Castillo, A.M., Cistué, L., Vallés, M.P., Soriano, M., 2009. Chromosome doubling in monocots. Adv. Haploid Prod. Higher Plants, 329-338.
Cheng, C., Gao, J., Ma, N., 2018. Investigation of petal senescence by TRV-mediated virus-induced gene silencing in rose. Plant Senescence, 49-63.
Comai, L., 2005. The advantages and disadvantages of being polyploid. Nature, 6(11), 836-846.
Corneillie, S., De Storme, N., Van Acker, R., Fangel, J.U., De Bruyne, M., De Rycke, R.M., Geelen, D.N.V., Willats, W.G.T., Vanholme, B., Boerjan, W.A., 2019. Polyploidy affects plant growth and alters cell wall composition. Plant Physiol., 179(1), 74-87.
Croser, J.S., Lülsdorf, M.M., Davies, P.A., Clarke, H.J., Bayliss, K.L., Mallikarjuna, N., Siddique, K.H., 2006. Toward doubled haploid production in the Fabaceae: progress, constraints, and opportunities. Crit. Rev. Plant Sci., 25(2), 139-157.
D’Amato, F., 1964. Endopolyploidy as a factor in plant tissue development. Caryologia, 17(1), 41-52.
D'Amato, F., Bayliss, M.W., 1985. Cytogenetics of plant cell and tissue cultures and their regenerates. Crit. Rev. Plant Sci., 3(1), 73-112.
Dar, J.A., Beigh, Z.A., Wani, A.A., 2017. Polyploidy: Evolution and crop improvement. InChromosome structure and aberrations. Springer New Delhi, 201-218.
Dhooghe, E., Van Laere, K., Eeckhaut, Y., Leus, L., Van Huylenbroeck, J., 2011. Mitotic chromosome doubling of plant tissues in vitro. Plant Cell Tissue Organ Cult., 104(3), 359-373.
Dunwell, J.M., 2010. Haploids in flowering plants: origins and exploitation. Plant Biotechnol. J., 8(4), 377-424.
Ebrahimzadeh, H., Soltanloo, H., Shariatpanahi, M.E., Eskandari, A., Ramezanpour, S.S., 2018. Improved chromosome doubling of parthenogenetic haploid plants of cucumber (Cucumis sativus L.) using colchicine, trifluralin, and oryzalin. Plant Cell Tissue Organ Cult., 135(3), 407-417.
Elliott, M., Yuzon, J., Tripathy, S., Bui, M., Chastagner, G.A., Coats, K., Rizzo, D.M., Garbelotto, M., Kasuga, T., 2018. Characterization of phenotypic variation and genome aberrations observed among Phytophthora ramorum isolates from diverse hosts. BMC Genom., 19(1), 320-338.
Eng, W.H., Ho, W.S., 2019. Polyploidization using colchicine in horticultural plants: a review. Sci. Hort., 246, 604-617.
Fasano, C., Diretto, G., Aversano, R., D’Agostino, N., Di Matteo, A., Frusciante, L., Giuliano, G., Carput, D., 2016. Transcriptome and metabolome of synthetic Solanum autotetraploids reveal key genomic stress events following polyploidization. New Phytol., 210(4), 1382-1394.
Fatima, B., Usman, M., Khan, M.S., Khan, I.A., Khan, M.M., 2015. Identification of citrus polyploids using chromosome counts, morphological and SSR markers. Pak. J. Agric. Sci., 52(1), 107-114.
Fu, L., Zhu, Y., Li, M., Wang, C., Sun, H., 2019. Autopolyploid induction via somatic embryogenesis in Lilium distichum Nakai and Lilium cernuum Komar. Plant Cell Tissue Organ Cult., 139(2), 237-248.
Gao, S.L., Chen, B.J., Zhu, D.N., 2002. In vitro production and identification of autotetraploids of Scutellaria baicalensis. Plant Cell Tissue Organ Cult., 70(3), 289-293.
Grosso, V., Farina, A., Giorgi, D., Nardi, L., Diretto, G., Lucretti, S., 2018. A high-throughput flow cytometry system for early screening of in vitro made polyploids in Dendrobium hybrids. Plant Cell Tissue Organ Cult., 132(1), 57–70.
Grouh, M.S.H., Meftahizade, H., Lotfi, N., Rahimi, V., Baniasadi, B., 2011. Doubling the chromosome number of Salvia hains using colchicine: Evaluation of morphological traits of recovered plants. J. Med. Plants Res., 5(19), 4892-4898.
He, M., Gao,W., Gao, Y., Liu, Y., Yang, X., Jiao, H., Zhou, Y., 2016. Polyploidy induced by colchicine in Dendranthema indicum var. Aromaticum, a scented chrysanthemum. Eur. J. Hortic. Sci., 81(4), 219-226.
Iannicelli, J., Guariniello, J., Tossi, V.E., Regalado, J.J., Di Ciaccio, L., van Baren, C.M., lvarez, S.P., Escand, A.S., 2020. The “polyploid effect” in the breeding of aromatic and medicinal species. Sci Hortic., 260:108854.
Iannicelli, J., Guariniello, J., Pitta-Álvarez, S.I., Escandón, A.S., 2018. Traditional uses, conservation status and biotechnological advances for a group of aromatic/medicinal native plants from the American continent. BLACPMA, 17, 453-491.
Jafarkhani Kermani, M., Emadpour M., 2019. Application of Polyploidization in Breeding of Ornamental Plants. Journal of Flower and Ornamental Plants., 3(2), 77-89. (In Persian)
Joubès, J., Chevalier, C., 2000. Endoreduplication in higher plants. Plant Mol. Biol., 43(5-6), 735-745.
Kaensaksiri, T., Soontornchainaksaeng, P., Soonthornchareonnon, N., Prathanturarug, S., 2011. In vitro induction of polyploidy in Centella asiatica (L.) Urban. Plant Cell Tissue Organ Cult., 107(2), 187-194.
Kanemaki, A., Otani, M., Takano, M., Fujimoto, T., Okuhara, H., Nomizu, T., Kondo, M., Kobayashi, H., Tatsuzawa, F., Nakano, M., 2018. Ectopic expression of the R2R3-MYB gene from Tricyrtis sp. results in leaf color alteration in transgenic Pelargonium crispum. Sci. Hort., 240, 411-416.
Khosravi, P., Kermani, M.J., Nematzadeh, G.A., Bihamta, M.R., Yokoya, K., 2008. Role of mitotic inhibitors and genotype on chromosome doubling of Rosa. Euphytica, 160(2), 267-275.
Kim, Y.S., Hahn, E.J., Murthy, H.N., Paek, K.Y., 2004. Effect of polyploidy induction on biomass and ginsenoside accumulations in adventitious roots of ginseng. J. Plant Biol., 47(4), 356-360.
Kishi-Kaboshi, M., Aida, R., Sasaki, K., 2016. Generation of gene-edited Chrysanthemum morifolium using multicopy transgenes as targets and markers. Plant Cell Physiol.58(2), 216-226.
Kobayashi, N., Yamashita, S., Ohta, K., Hosoki, T., 2008. Morphological characteristics and their inheritance in colchicine-induced salvia polyploids. J. Jpn. Soc. Hortic. Sci., 77(2), 186-191.
Kumar, J., Gupta, P.K., 2008. Molecular approaches for improvement of medicinal and aromatic plants. Plant Biotechnol. Rep., 2(2), 93-112.
Kushwah, K.S., Verma, R.C., Patel, S., Jain, N.K., 2018. Colchicine induced polyploidy in Chrysanthemum carinatum L. J. Phylogenet. Evol. Biol., 6(193), 2-4.
Kwon, S.J., Roy, S.K., Cho, K.Y., Moon, Y.J., Woo, S.H., Kim, H.H., 2014. Tetraploid induction approach induced by colchicine of Prunella vulgaris for. albiflora Nakai. Int. J. Sci. Res. Pub., 4(12), 1-7.
Van Laere, K., França, S.C., Vansteenkiste, H., Van Huylenbroeck, J., Steppe, K., Van Labeke, M.C., 2011. Influence of ploidy level on morphology, growth and drought susceptibility in Spathiphyllum wallisii. Acta Physiol. Plant., 33(4), 1149-1156.
Lavania, U.C., 2005. Genomic and ploidy manipulation for enhanced production of phytopharmaceuticals. Plant Genet. Resour., 3(2), 170-177.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed
Lavania, U.C., Srivastava, S., Lavania, S., Basu, S., Kumar Misra, N., Mukai, Y., 2012. Autopolyploidy differentially influences body size in plants, but facilitates enhanced accumulation of secondary metabolites, causing increased cytosine methylation. Plant J., 71(4), 539-549.
Lertsutthichawan, A., Ruamrungsri, S., Duangkongsan,W., Saetiew, K., 2017. Induced mutation of chrysanthemum by colchicine. Int. J. Agric. Technol., 13, 2325-2332.
Li, Z., Ruter, J.M., 2017. Development and Evaluation of diploid and polyploid Hibiscus moscheutos. Hort. Sci., 52(5), 676-681.
Majdi, M., Karimzadeh, G., Malboobi, M.A., Omidbaigi, R., Mirzaghaderi, G., 2010. Induction of tetraploidy to feverfew (Tanacetum parthenium Schulz-Bip.): Morphological, physiological, cytological, and phytochemical changes. Hort Sci., 45(1), 16-21.
Manzoor, A., Ahmad, T., Bashir, M.A., Hafiz, I.A., Silvestri, C., 2019. Studies on colchicine induced chromosome doubling for enhancement of quality traits in ornamental plants. Plants, 8(7), 194.
Manzoor, A., Ahmad, T., Bashir, M.A., Baig, M.M.Q., Quresh, A.A., Shah, M.K.N., Hafiz, I.A., 2018. Induction and identification of colchicine induced polyploidy in Gladiolus grandiflorus ‘White Prosperity’. Folia Hort., 30(2), 307-319.
Miguel, T.P., Leonhardt, K.W., 2011. In vitropolyploid induction of orchids using oryzalin. Sci. Hort., 130(1), 314-319.
Mishra, B.K., Pathak, S., Sharma, A., Trivedi, P.K., Shukla, S., 2010.  Modulated gene expression in newly synthesized auto-tetraploid of Papaver somniferum L. S. Afr. J. Bot., 76(3), 447-452.
Mostafa, G.G., Alhamd, M.F.A., 2016. Detection and evaluation the tetraploid plants of Celosia argentea induced by colchicine. Int. J. Plant Breed. Genet., 10(2), 110-115.
Niazian, M., Molaahmad Nalousi, A., 2020. Artificial polyploidy induction for improvement of ornamental and medicinal plants. Plant Cell Tissue Organ Cult., 142, 447-469.
Ning, G.G., Shi, X.P., Hu, H.R., Yan, Y., Bao, M.Z., 2009. Development of a range of polyploid lines in Petunia hybrid and the relationship of ploidy with the single-double-flower trait. Hort. Sci., 44(2), 250-255.
Osborn, T.C., Pires, J.C., Birchler, J.A., Auger, D.L., Chen, Z.J., Lee, H.S., Comai, L., Madlung, A., Doerge, R.W., Colot, V., Martienssen, R.A., 2003. Understanding mechanisms of novel gene expression in polyploids. Trends Genet., 19(3), 141-147.
Øvrebø, J.I., Edgar, B.A., 2018. Polyploidy in tissue homeostasis and regeneration. Development, 145(14), dev156034.
Palozola, K.C., Lerner, J., Zaret, K.S., 2019. A changing paradigm of transcriptional memory propagation through mitosis. Nat. Rev. Mol. Cell Biol., 20(1), 55-64.
Podwyszy´ nska, M., Gabryszewska, E., Dyki, B., St˛epowska, A.A., Kowalski, A., Jasi ´ nski, A., 2015. Phenotypic and genome size changes (variation) in synthetic tetraploids of daylily (Hemerocallis) in relation to their diploid counterparts. Euphytica, 203(1), 1-16.
Prabhukumar, K.M., Thomas, V.P., Sabu, M., Prasanth, M.V., Mohanan, K.V., 2015. Induced mutation in ornamental gingers (Zingiberaceae) using chemical mutagens viz. colchicine, acridine and ethyl methane sulphonate. J. Hortic. For. Biotechnol., 19, 18-27.
Ramsey, J., Schemske, D.W., 1998. Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annu. Rev. Ecol. Syst., 29(1), 467-501. 
Ramsey, J., Schemske, D.W., 2002. Neopolyploidy in flowering plants. Annu. Rev. Ecol. Syst., 33(1), 589-639.
Rathod, A.D., Patil, S.R., Taksande, P.N., Karad, G.W., Kalamkar, V.B., Jayade, V.S., 2018. Efect of colchicine on morphological and biometrical traits in African marigold. J. Soils Crops, 28(1), 72-80.
Ravichandran, M.C., Fink, S., Clarke, M.N., Hofer, F.C., Campbell, C.S., Genetic interactions between specific chromosome copy number alterations dictate complex aneuploidy patterns. Genes Dev., 32(23-24), 1485-1498.
Sadhukhan, R., Ganguly, A., Singh, P.K., Sarkar, H.K., 2014. Study of Induced polyploidy in African marigold (Tagetes ecrecta L.). Environ. Ecol., 32, 1219-1222.
Sajjad, Y., Jaskani, M.J., Mehmood, A., Ahmad, I., Abbas, H., 2013. Efect of colchicine on in vitro polyploidy induction in African marigold (Tagetes erecta). Pak. J. Bot., 45, 1255-1258.
Salma, U., Kundu, S., Mandal, N., 2017. Artificial polyploidy in medicinal plants: advancement in the last two decades and impending prospects. J. Crop. Sci. Biotech., 20, 9-19.
Sattler, M.C., Carvalho, C.R., Clarindo, W.R., 2016. The polyploidy and its key role in plant breeding. Planta., 243(2), 281-296.
Shmeit, Y.H., Fernandez, E., Novy, P., Kloucek, P., Orosz, M., Kokoska, L., 2020. Autopolyploidy effect on morphological variation and essential oil content in Thymus vulgaris L. Sci. Hort., 263, 109095.
Sivakumar, G., Alba, K., Phillips, G.C., 2017. Biorhizome: a biosynthetic platform for colchicine biomanufacturing. Front Plant Sci., 8, 1137.
CrossRef    Google Scholar    full-text PDF    Mendeley    
Soltis, D.E., Soltis, P.S., Schemske, D.W., Hancock, J.F., Thompson, J.N., Husband, B.C., Judd, W.S., 2007. Autopolyploidy in angiosperms: have we grossly underestimated the number of species? Taxon, 56(1), 13-30.
Takamura, T., Lim, K.B., Van Tuyl, J.M. 2002. Effect of a new compound on the mitotic polyploidization of Lilium longiflorum and oriental hybrid lilies. New Ornamentals II., 572, 33-34.
Talebi, S.F., Saharkhiz, M.J., Kermani, M.J., Sharafi, Y., Raouf Fard, F., 2017. Effect of different antimitotic agents on polyploid induction of anise hyssop (Agastache foeniculum L.). Caryologia, 70(2), 184-193. 
Tan, F.Q., Tu, H., Wang, R., Wu, X.M., Xie, K.D., Chen, J.J., Zhang, H.Y., Xu, J., Guo, W.W., 2017. Metabolic adaptation following genome doubling in citrus doubled diploids revealed by non-targeted metabolomics. Metabolomics, 13(11), 143-154.
Thong-on, W., Arimatsu, P., Pitiporn, S., Soonthornchareonnon, N., Prathanturarug, S., 2014. Field evaluation of in vitro-induced tetraploid and diploid Centella asiatica (L.). Urban J. Nat. Med., 68(2), 267-273.
Tiwari, A.K., Mishra, S.K., 2012. Efect of colchicine on mitotic polyploidization and morphological characteristics of Phlox drummondi. Afr. J. Biotechnol., 11, 9336–9342.
Tolmacheva, E.N., Vasilyev, S.A., Lebedev, I.N., 2020. Aneuploidy and DNA methylation as mirrored features of early human embryo development. Genes, 11(9), 1084.
Touchell, D.H., Palmer, I.E., Ranney, T.G., 2020. In vitro ploidy manipulation for crop improvement. Front Plant Sci., 11, 722.
Vichiato, M.R.M., Vichiato, M., Pasqual, M., Castro, D.M.D., Dutra, L.F., 2007. Tetraploidy induction and identification in Dendrobium nobile Lindl (Orchidaceae). Rev. Cienc. Agron., 38(4), 385-390.
Wendel, J.F., Lisch, D., Hu, G., Mason, A.S., 2018. The long and short of doubling down: polyploidy, epigenetics, and the temporal dynamics of genome fractionation. Curr. Opin. Genet. Dev., 49, 1-7.
Wood, T., Takebayashi, N., Barker, M.S., Mayrose, I., Greenspoon, P.B., Rieseberg, L.H., 2009. The frequency of polyploid speciation in vascular plants. Proc. Natl. Acad. Sci., 106(33), 13875-13879.
Xu, C., Zhang, Y., Huang, Z., Yao, P., Li, Y., Kang, X., 2018. Impact of the leaf cut callus development stages of Populus on the tetraploid production rate by colchicine treatment. J. Plant Growth Regul., 37(2), 635-644.
Xu, J., Kang, B.C., Naing, A.H., Bae, S.J., Kim, J.S., Kim, H., Kim, C.K., 2020. CRISPR/Cas9-mediated editing of 1-aminocyclopropane-1-carboxylate oxidase1 enhances Petunia flower longevity. Plant Biotechnol J., 18(1), 287-297.
Xu, C., Tang, Y., Chen, R., Liang, C., Liu, X., Wu, C., Yang, Y., Yang, D., Wu, H., 2014. A comparative study of bioactive secondary metabolite production in diploid and tetraploid Echinacea purpurea (L.) Moench. Plant Cell Tissue Organ Cult., 116(3), 323-332.
Yang, X., Ye, C.Y., Cheng, Z.M., Tschaplinski, T.J., Wullschleger, S.D., Yin, W., Xia, X., Tuskan, G.A., 2011. Genomic aspects of research involving polyploid plants. Plant Cell Tissue Organ Cult., 104(3), 387-397.
Zhang, C., Cao, D., Kang, L., Duan, J., Ma, X., Yan, G., Wang, Y., 2014. Ploidy variation and karyotype analysis in Hemerocallis spp. (Xanthorrhoeaceae) and implications on daylily breeding. New Zealand J. Crop. Hort. Sci., 42(3), 183-193.